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In merohedric twinning, the lattices of the individuals are perfectly overlapped

and the presence of twinning is not easily detected from the diffraction pattern,

especially in the case of inversion twinning (class I). In general, the investigator

has to consider three possible structural models: a crystal with space-group type

H and point group P, either untwinned (H model) or twinned through an

operation t in vector space (t-H model), and an untwinned crystal with space

group G whose point group P0 is obtained as an extension of P through the twin

operation t (G model). In 71 cases, consideration of the reflection conditions

may directly rule out the G model; in seven other cases the reflection conditions

suggest a space group which does not correspond to the extension of H by the

twin operation and the structure solution or at least the refinement will fail.

When the twin operation belongs to a different crystal family (class IIB

twinning: the crystal has a specialized metric), the presence of twinning can often

be recognized by the peculiar effect it has on the reflection conditions.

1. Introduction

Twinning by merohedry (also known as merohedric2 twinning)

occurs when the twin operation t (the operation mapping the

orientations of the individuals in a twin) is a symmetry

operation for the lattice but not for the structure. The twin

index is 1, meaning that the whole lattice is restored by the

twin operation (for recent reviews, see Hahn & Klapper, 2003;

Grimmer & Nespolo, 2006). This article presents a systematic

derivation of the effects of twinning by merohedry on the

diffraction pattern, in terms of the reflection conditions and

diffraction symmetry.

Twinning is a point-group phenomenon, in the sense that t is

an operation of a point group (in vector space) that produces a

heterogeneous crystalline edifice not possessing a space group,

but this edifice is built from homogeneous domains or indi-

viduals having the same chemical composition and the same

structure but differing in their orientation in space (for details,

see Nespolo et al., 2004; Ferraris et al., 2008). If the point

groups of the individual are of type3 P, and if P* is the

intersection group of the point groups of the individuals in

their respective orientations, the twin operation t extends P*

(in the mathematical sense) to a chromatic point group Pc
0 =

hP*,ti, where the chromatic nature comes precisely from t: Pc
0

contains both achromatic operations (symmetry operations

for the individuals) and chromatic operations (operations

mapping the orientations of the individuals) (for details, see

Nespolo, 2004). In the case of twinning by merohedry, the

lattices of the individuals are exactly overlapped and Pc
0 is an

extension of P. The twin (chromatic) operations are obtained

by forming the left coset tP; all these are equivalent under P.

Alternatively, a right coset could be used as well. These

operations constitute one twin law and any of them can be

taken as the twin operation (coset representative). Let us take

P0 as the achromatic point group isomorphic to Pc
0: in the case

of twinning by merohedry, it is always a supergroup of P.

Hereafter, P0 defined in this way is meant when the term

‘symmetry of the twin’ is used.

Twinning by merohedry has been classified into three

classes (Nespolo & Ferraris, 2000).

Class I: the individual belongs to a non-centrosymmetric

geometric crystal class and the twin operation belongs to the

corresponding Laue class. In other words, the twin law (coset)

contains the inversion and this can always be taken as the twin

operation (coset representative).

Class IIA: P0 stays in the same crystal family as P but the

twin operation does not belong to the Laue class of the indi-

1 This article forms part of a special issue dedicated to mathematical
crystallography, which will be published as a virtual special issue of the
journal in 2014.
2 Note that the expression ‘merohedral twinning’ which appears often in the
literature is inappropriate: ‘merohedral’ indicates the symmetry of an
individual, not that of a twin (see Catti & Ferraris, 1976).
3 For details about the difference between point groups and point-group types,
see Nespolo & Souvignier (2009).
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vidual and thus the twin law does not contain the inversion.

On inspection, the individual is seen to belong to one of the

following 22 arithmetic crystal classes: 4P, 4I, �44P, �44I, 4/mP,

4/mI, 3R, 3P, �33R, �33P, 32P, 3mP, �33mP, 6P, �66P, 6/mP, 23P, 23I,

23F, m�33P, m�33I, m�33F.

Class IIB: the individual may belong to any crystal class but

has a specialized metric and the twin operation belongs to a

higher holohedry; P0 belongs to a different crystal family than

P. Quite obviously, the twin law does not contain the inversion

but as for class IIA the individual may or may not belong to a

centrosymmetric crystal class.

The index of P in P0, [P0:P], gives the maximum number of

possible individuals of the twin. Class I and class IIA twinning

are collectively called ‘syngonic merohedry’ and include only

twofold twin operations: a higher-degree rotation would in

fact belong to a higher holohedry and would bring the

symmetry of the twin to a different crystal family, i.e. corre-

sponds to class IIB, which is also known as ‘metric merohedry’

(Nespolo & Ferraris, 2000).

Let r be the number of independent twin laws; twins are

divided into first-degree (r = 1) and higher-degree (r > 1)

twins. Furthermore, twins are divided into manifold and

twofold twins depending on whether at least one twin

element4 has order higher than 2 (Nespolo, 2004). For first-

degree twofold twins (also called binary twins), the number of

individuals is always N = 2 = [P0:P], whereas in the case of

higher-degree or manifold twins the number N of individuals

may be lower than [P0:P] (individuals not developed or lost by

physical action). When N < [P0:P], some of the twin operations

can be considered as ‘inactive’ operations because the indi-

vidual they would generate is missing. Depending on whether

N = [P0:P] or N < [P0:P], one speaks of a complete twin or an

incomplete twin (Nespolo, 2004). The complete or incomplete

character of the twin has profound effects on the symmetry of

the diffraction pattern, as discussed later.

2. The diffraction symmetry of merohedric twins

The investigation of the possible presence of merohedric

twinning based on the diffraction pattern may exploit two

criteria: the reflection conditions and, for complete twins, the

symmetry of the diffraction pattern.

Twinning by syngonic merohedry, with one single exception

detailed below, does not affect the reflection conditions.

Different is the case of class IIB twinning, when non-space-

group absences may arise, which are a distinct sign of twin-

ning.5 In this class the twin operation superimposes crystal-

lographically independent reflections, so that the measured

intensities are actually the sum of the intensities from each

individual, scaled by their volume fraction (Catti & Ferraris,

1976). This effect is maximal in twinning by merohedry, where

all the measured intensities are the unphased sum of inten-

sities from the individuals. In other words, if a twin operation t

relates the reflections h1k1l1 of the first individual and h2k2l2 of

the second individual (in the axial setting of the first, taken

also as axial setting of the twin), and if I0 is the measured

intensity, then

I0ðh1k1l1Þ ¼ vIðh1k1l1Þ þ ð1� vÞIðh2k2l2Þ; ð1Þ

where v is the fraction of the volume corresponding to the first

individual. In the case of class I twins, where two individuals

are related by an inversion, equation (1) becomes

I0ðhklÞ ¼ vIðhklÞ þ ð1� vÞIðhklÞ: ð2Þ

Under Friedel’s law (i.e. unless resonant scattering is

substantial) IðhklÞ ¼ IðhklÞ, thus the intensity I0 is exactly the

same when measured from a twinned sample or from an

untwinned sample, centrosymmetric or not, having the same

volume as the twinned edifice.

When instead the twin belongs to class IIA or IIB, the twin

operation overlaps reflections that are non-equivalent even

under Friedel’s law: the presence of twinning may then hinder

a correct derivation of the space group from the diffraction

pattern. For class IIB, the twin law may contain an operation

of degree higher than 2, i.e. a crystallographic n-fold rotation

with n > 2. Let this operation be n[uvw] (rotoinversions are of

course allowed as well); then [uvw] may also be the direction

of a symmetry element for the individual, of order m � 1 (1

being the trivial case of the identity operation). The ratio n/m

can be equal to 2 (a fourfold twin rotation about a twofold axis

for the individual as in the case of a tetragonal metric

specialization of an orthorhombic individual or of a cubic

specialization of a tetragonal individual; a sixfold twin rotation

about a threefold axis for the individual as in the case of a

trigonal crystal twinned by twofold rotation about the unique

axis) or higher (any case corresponding to n > 2 and m = 1 as

well as a sixfold twin rotation about a twofold axis for the

individual). The following five cases of class IIA and class IIB

twinning have to be distinguished.

(a) First-degree class IIA twins (i.e. binary twins): only a

single twofold twin element occurs (r = 1); [P0:P] = 2, the twin

is composed of two individuals and is always complete.

(b) Higher-degree class IIA twins: r > 1 independent

twofold twin elements occur; [P0:P] = 2r, the complete twin is

composed of 2r individuals, an incomplete twin occurs when N

< 2r.

(c) First-degree class IIB twins: only a single twin element

occurs (r = 1), whose order is n � 2;

(i) n/m (as defined above) = 2: [P0:P] = 2 and, exactly as in

the case of binary twins, an incomplete twin is not possible; the

only difference with respect to binary twins is that here the

twin operation belongs to a different crystal family;

(ii) n/m > 2: [P0:P] = n/m, the complete twin is composed

of n/m individuals, an incomplete twin occurs when N < n/m.

(d) Higher-degree class IIB twins: r > 1 twin elements occur,

of which at least one has n > 2; [P0:P] = �ini/mi; the complete
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4 A twin element is the geometric element (plane, axis, centre) about which a
twin operation is performed combined with the twin operation performed
about it.
5 Non-space-group absences are not an exclusive feature of twins, occurring
also in modular structures, in particular polytypes and OD structures, where
these absences come from the existence of local symmetry operations
(Dornberger-Schiff, 1956). The non-space-group absences derived in this
article are, however, typical of twinning, where they originate in the overlap of
two or more orientations of the same diffraction pattern.



twin is composed of �ini/mi individuals, an incomplete twin

occurs when N < �ini/mi.

The latter expression, [P0:P] = �ini/mi, includes all the

others as subcases. P0 is obtained by an extension of P by the

independent twin operations n[uvw], and the index [P0:P]

corresponds to the number of cosets (and thus to the number

of twin laws plus one) and to �ini/mi:

P0 ¼ [itiP ð3Þ

where ti is the ith coset representative (t1 = 1). When the twin

is complete, the symmetry of the diffraction pattern of the

twinned edifice corresponds to at least P.6 It may, however,

be increased to a supergroup of P by the presence of twin

elements, leading thus to a diffraction enhancement of

symmetry, as was recognized earlier by Buerger (1954). The

symmetry of the twin in the reciprocal space depends on the

volume of the individuals, while the volume plays no role in

the direct space, where only the orientations of the individuals,

not their size, define the symmetry of the twin (exactly like the

morphological symmetry of a crystal does not depend on the

development of the individual faces). Only when the indivi-

duals related by the twin operations have the same volume is

the diffraction enhancement of symmetry realized; equation

(1) (two individuals) becomes

I0ðh1k1l1Þ ¼ I0ðh2k2l2Þ ¼ 0:5½Iðh1k1l1Þ þ Iðh2k2l2Þ�: ð4Þ

However, this enhancement is accidental and differs radically

from the homonymous phenomenon (see, for example,

Sadanaga & Takeda, 1968; Iwasaki, 1972; Marumo & Saito,

1972; Perez-Mato & Iglesias, 1977; Sadanaga & Ohsumi, 1979)

that is observed when a structure is composed of substructures

(polytypes, cell-twins, homologous structures: see Nespolo et

al., 2004). There, a phase relation is introduced, while here a

simple weighted sum of the intensities is obtained. The

diffraction enhancement of symmetry in twins may lead to

choosing a wrong space group; in this case, even when a

solution of the structure is apparently obtained, the refine-

ment does not converge satisfactorily and the presence of

twinning should be suspected.

When [P0:P] > 2, equation (2) is immediately generalized to

I0ðhjkjljÞ ¼
P

i

viIðhikiliÞ; where
P

i

vi ¼ 1 ð5Þ

and i runs from 1 to N, where N is the number of individuals. If

the twin is complete and each individual takes one Nth of the

volume of the twinned edifice, a diffraction enhancement of

symmetry is observed and equation (5) becomes

I0ðhjkjljÞ ¼
P

i

IðhikiliÞ=N ð6Þ

where j is any of the indices covered by the running index i.

If the twin is incomplete, the diffraction enhancement of

symmetry cannot be realized. In fact, the index i in equation

(5) runs over a subset of the twin laws obtained by the coset

decomposition of P0 with respect to P. The result is not a group

but a subset of elements of P0 not forming a group (called a

complex in group theory: Ledermann, 1964). The diffraction

symmetry of an incomplete twin by syngonic merohedry is

therefore the same as that of the untwinned crystal, inde-

pendently from the volume of the individuals. For metric

merohedry (class IIB) instead, incomplete twinning may even

break the symmetry of the reflection conditions to that of a

lower crystal family, as we are going to see in x6.2.

3. Point- and space-group extensions

Despite the point-group nature of twinning, consideration of

the space group of the individuals may give some important

information, in particular about the reflection conditions in

the twinned and untwinned sample. Let H be the space-group

type of the individual, whose point group is of type P, and let t

be an operation in the vector space extending P to P0: the

extension is written as P0 = hP,ti. In general, one may find up to

three models having the same reflection conditions: (i) an

untwinned model (H model below); (ii) a twinned model in

which the twin operation is t (t-H model below); and (iii) an

untwinned model in a space group of type G with point group

P0 = hP,ti (G model below). Fortunately, the three models do

not always have the same reflection conditions and the

purpose of the following sections is to give a general approach

to differentiate the three models when this is possible.

As shown in xx5 and 6, in syngonic merohedry – with a

single exception in class IIA discussed below – the twin

operation t, which belongs to the crystal family of the indivi-

dual, does not alter the reflection conditions of the individual.

The reflection conditions in the t-H model are therefore the

same as those in the H model. This is no longer the general

case for class IIB twinning, because the twin operation belongs

to a different crystal family and the diffraction pattern in many

cases does not match the reflection conditions of any space-

group type; in other words, non-space-group absences occur.

On the other hand, when a group G having P0 = hP,ti shows

the same reflection conditions as H, these cannot be used as a

criterion to discriminate between the H and the G models.

Hereafter, a group G having the same reflection conditions as

H is indicated by G#. The relation between G# and H can be of

two types, but in both cases G# and H have the translation

subgroup (i.e. the lattice) in common because in twinning by

merohedry the twin index is 1.

(i) G# = hH,si: G# is a supergroup of H, obtained as an

extension by a point space operation s corresponding to

(having the same linear part as) the twin operation t; this

occurs in the vast majority of cases. The operation s relates the

same reflections h1k1l1 and h2k2l2 as t but, being a space-group

operation, introduces a phase relation between them: when

t 6¼ �11, the two models t-H and G can therefore be distin-

guished at the refinement stage, unless the diffraction

enhancement of symmetry is present.

(ii) G# is a group of higher order than H but not a super-

group of it. The two models t-H and G can then be easily

distinguished at the structure solution stage even in the

presence of diffraction enhancement of symmetry.
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we deal with merohedric twins.



When instead no G# groups exist, it is possible to differ-

entiate the t-H and the G models already on the basis of the

observed reflection conditions.

Giacovazzo (2011; Table 4.3) and Koch (2004; Table 1.3.4.2)

present a list of the space-group types that may be simulated

by the effects of twinning, without however analysing the

criteria to differentiate between the H model and the t-H

model on the one hand, and the G model on the other. Araki

(1991), extending the work of Le Page et al. (1984), gives, for

the case [P0:P] = 2 and equi-volume individuals, a list of ‘twin

extinction’ reflections for a subset of the possible twin laws:

the presence of these reflections corresponds to the absence of

a G# group in our approach. Here we present a comprehensive

analysis which deals with class IIB twinning as well. The

extensive list of reflection conditions given in the tables can be

obtained from Table 3.1.4.1 in Volume A of International

Tables for Crystallography, at least for class I and class IIA, by

considering the effect of the twin operations; for class IIB one

also has to consider the Euclidean and affine normalizers, as

we are going to show.

4. Class I twinning

Because a lattice in E3 (the Euclidean three-dimensional

space) is always centrosymmetric, the reflection conditions are

always the same for H and t-H. All symmorphic space groups

have a centrosymmetric G# supergroup: in fact, a symmorphic

space group has either no reflection conditions, if the

conventional unit cell is primitive, or integral reflection

conditions only, if it is centred. For non-symmorphic space

groups, when G# exists, it is always a supergroup of H

(G = hH,1i) with the exception of H = I212121, which has

no centrosymmetric supergroup but, having only integral

reflection conditions, behaves like the symmorphic space

group I222 and therefore has G# = Immm. On the basis of the

observed reflection conditions, the following situations may

occur.

(i) The reflection conditions are compatible with a non-

centrosymmetric group H as well as with a centrosymmetric

group G#: the three models H, t-H and G have to be tested,

because no direct evidence of twinning can be obtained from

the diffraction pattern, unless resonant scattering is significant.

However, when the refinement leaves some unexplained

features (like unusual thermal displacements or correlations

between parameters suggesting strong pseudosymmetry), the

presence of inversion twinning can reasonably be suspected.

Structure refinement programs normally recognize this

ambiguity via an intermediate value of the Flack parameter

(Flack, 1983).

(ii) The reflection conditions are compatible with a non-

centrosymmetric group H but there is no centrosymmetric

group G# with the same reflection conditions: the two models

H and t-H are left, while the model G is ruled out. Exactly as

in the previous case, the presence of twinning can be suggested

by unexplained features.

(iii) The reflection conditions are compatible with a

centrosymmetric group G but not with a non-centrosymmetric

group H. In this case, both models H and t-H are excluded

a priori and the presence of inversion twinning is ruled

out.

Table 1 gives the 33 centrosymmetric types of space

groups corresponding to case (iii) above (among these, 30 are

identified unequivocally from the reflection conditions only,

the other three giving rise to pairs of hemihedral and holo-

hedral centrosymmetric types with the same reflection

conditions). If the observed reflection conditions correspond

to one of these 33 cases, class I twinning can be excluded a

priori.

To identify the space-group types corresponding to case (ii),

one has to consider the effect of the extension of H by s = 1,

which gives zero to six different types G. Zero means that no

extension by inversion is possible: this is the case for 22 of the

24 space-group types containing a screw axis n� where � 6¼ n/2;

the two exceptions are F4132 and I4132. The largest number of

extensions (namely six) occurs for P21212. Among the space-

group types G obtained as hH,1i, there exists at most one

having the same reflection conditions as H: it is hereafter

indicated as G#. When no G# exists, or when no centrosym-

metric extension is possible, and the reflection conditions

correspond to the H model, the G model is automatically ruled
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Table 1
The 33 centrosymmetric space-group types having no non-centrosym-
metric subgroup with the same reflection conditions.

Entries are ordered according to the diffraction symbol, as given in Looijenga-
Vos & Buerger (2006), in the following indicated as LVB for the sake of
brevity.

Crystal family Diffraction symbol G No.

M P21/c P21/c 14
O Pban Pban 50

Pbca Pbca 61
Pbcn Pbcn 60
Pcca Pcca 54
Pccn Pccn 56
Pnna Pnna 52
Pnnn Pnnn 48
Ccc(ab) Ccce 68
Ibca Ibca 73
Fddd Fddd 70

T Pn-- P4/n 85
P4/nmm 129

Pn-c P42/nmc 137
P42/n-- P42/n 86
Pnb- P4/nbm 125
Pnc- P42/ncm 138
Pnn- P42/nnm 134
Pnbc P42/nbc 133
Pncc P4/ncc 130
Pnnc P4/nnc 126
I41/a-- I41/a 88
Ia-d I41/amd 141
Iacd I41/acd 142

C Pa-- Pa�33 205
Pn-- Pn�33 201

Pn�33m 224
Pn-n Pn�33n 222
Ia-- Ia�33 206
Ia-d Ia�33d 230
Fd-- Fd�33 203

Fd�33m 227
Fd-c Fd�33c 228



out, but the possible presence of inversion twinning has to be

checked.

Tables 2 to 5 list the 101 merohedral non-symmorphic types

of space groups H that can give rise to 148 twin laws (class I

and class IIA), indicated by a coset representative; three twin

laws in the tetragonal crystal family (indicated by the symbol {

in Table 3) have been split into two, because two different

coset representatives give different results in terms of G (in

one case, G# exists for one coset representative but not for the

others; in the other two cases, no extension G# is possible for

one coset representative while an extension exists for the

other but with additional reflection conditions), leading to a

total of 150 cases to be considered. A G# group exists only in

78 cases (G# is a supergroup of H in 71 cases): for the other 72

cases, the G model can be excluded on simple inspection of the

reflection conditions.

For the 78 space-group types H for which the G# group

exists, the three models, H, t-H and G, are indistinguishable;

using G when the sample is to some extent pseudo-centro-

symmetric does not necessarily hinder the structure solution,

unless resonant scattering is substantial, likely resulting only

in apparent disorder or abnormal displacement parameters.

The intensity distribution is more centric in disordered crystals

than in twins (Rees, 1980), and the statistical analysis of the

intensities can help distinguish the G model from the t-H

model.
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Table 3
Classification of the 34 merohedral non-symmorphic space-group types H
in the tetragonal crystal family, which can give rise to 42 twin laws.

Three twin laws (indicated by the symbol {) have been split into two, because
two different coset representatives give different results in terms of G, leading
to a total of 45 cases. Among these, ten cannot be extended by a twofold
operation s corresponding to the twin operation t (‘no extension’ in the table),
and 16 more do have such an extension but none of the corresponding
supergroups G has the same reflection conditions as H (‘---’ in the table). For
these 26 cases (16 for class I and ten for class IIA) the G model is ruled out on
the basis of the observed reflection conditions: H in the corresponding row is
shown in bold, accompanied by dashes in the last column. For the other 19
cases, the group G# having the same reflection conditions as H is given; in the
tetragonal crystal family, G# is always a supergroup of H. Entries are ordered
according to the diffraction symbol, as given in LVB.

Diffraction
symbol H No. t G# No.

Non-centrosymmetric hemihedral (only class I twinning possible)
P-21- P4212 90�11 --- ---

P �4421m 113 --- ---
P42-- P4222 93 --- ---
P4221- P42212 94 --- ---
P41-- P4122 91 no extension ---

P4322 95 no extension ---
P4121-- P41212 92 no extension ---

P43212 96 no extension ---
P--c P42mc 105 P42/mmc 131

P�442c 112
P-21c P �4421c 114 --- ---
P-b- P4bm 100 P4/mbm 127

P�44b2 117
P-bc P42bc 106 P42/mbc 135
P-c- P42cm 101 P42/mcm 132

P�44c2 116
P-cc P4cc 103 P4/mcc 124
P-n- P42nm 102 P42/mnm 136

P�44n2 118
P-nc P4nc 104 P4/mnc 128
I41-- I4122 98 --- ---
I--d I41md 109 --- ---

I �442d 122 --- ---
I-c- I4cm 108 I4/mcm 140

I �44c2 120
I-cd I41cd 110 --- ---

Centrosymmetric hemihedral (only class IIA twinning possible)
P42-- P42/m 84

n
2[100] --- ---
2[110] no extension ---

Pn-- P4/n 85
n

2[100] --- ---
2[110] P4/nmm 129

P42/n-- P42/n 86 2[100] --- ---

Tetartohedral (both class I and class IIA twinning possible)
P42-- P42 77 �11 P42/m 84

2[100] P4222 93
m[100] --- ---

P41-- P41 76 �11 no extension ---
2[100] P4122 91
m[100] no extension ---

P43 78 �11 no extension ---
2[100] P4322 95
m[100] no extension ---

I41-- I41 80 �11 --- ---
2[100] I4122 98n

m[100] --- ---
m[110] no extension ---

I41/a-- I41/a 88 2[100] --- ---

Table 2
The 26 biaxial non-centrosymmetric non-symmorphic types of space
groups H, classified by their corresponding diffraction symbol, and the
corresponding centrosymmetric group G# showing the same reflection
conditions (in all but one case G# is the centrosymmetric supergroup of
H).

In five cases (shown in bold in the H column and by dashes in the G# column)
no G# exists and an inversion twin cannot be mistaken for a centrosymmetric
untwinned crystal: in other words, the G model is ruled out on the basis of the
observed reflection conditions. The superscript * means that G# is not a
supergroup of H. Entries are ordered according to the diffraction symbol, as
given in LVB. For monoclinic groups, a shortened (unoriented) diffraction
symbol is given.

Diffraction symbol H No. G# (class I) No.

P21 P21 4 P21/m 11
P--21 P2221 17 --- ---
P-2121 P21212 18 --- ---
P212121 P212121 19 --- ---
P-a- Pma2 28 Pmam (Pmma) 51
Pc Pc 7 P2/c 13
P-c- Pmc21 26 Pmcm (Pmma) 51
P-n- Pmn21 31 Pmmn 59
Pba- Pba2 32 Pbam 55
Pca- Pca21 29 Pcam (Pbcm) 57
Pcc- Pcc2 27 Pccm 49
Pna- Pna21 33 Pnam (Pnma) 62
Pnc- Pnc2 30 Pncm (Pmna) 53
Pnn- Pnn2 34 Pnnm 58
C--21 C2221 20 --- ---
Cc Cc 9 C2/c 15
C-c- Cmc21 36 Cmcm 63
Ccc- Ccc2 37 Cccm 66
A--- Amm2 38 Ammm (Cmmm) 65
A-a- Ama2 40 Amam (Cmcm) 63
A(bc)-- Aem2 39 Aemm (Cmme) 67
A(bc)a- Aea2 41 Aeam (Cmce) 64
I--- I212121 24 Immm* 71
Iba- Iba2 45 Ibam 72
I-(ac)- Ima2 46 Imam (Imma) 74
Fdd- Fdd2 43 --- ---



5. Class IIA twinning

In class IIA twinning, the twin operation does not belong to

the Laue class of the individual and the twin law (coset) does

not contain the inversion. The twin operation is therefore

either a twofold rotation or a mirror reflection (a higher-

degree rotation would bring the symmetry of the twin to a

different crystal family and corresponds to class IIB). Triclinic,

monoclinic and orthorhombic space groups do not need to be

considered here, because any group–subgroup relation in

these three crystal families gives rise to class I twinning. The

analysis is shown in Tables 3 to 5.

As in class I twinning, the models H and t-H are not

distinguishable on the basis of the observed reflection condi-

tions, with one exception, which is easily understood by

analysing the effect of the operations of the Euclidean

normalizer of H on the diffraction pattern. The Euclidean

normalizer NE(H) (also known as the Cheshire group) is the

subgroup of the Euclidean group (i.e. the group of all

isometries of the Euclidean space) containing all the opera-

tions that map H onto itself by conjugation, i.e. all the

operations e of E such that ehe�1
2 H for all h in H (Koch et

al., 2006; Koch & Fischer, 2006). As a consequence, the

Euclidean normalizer NE(H) also maps the symmetry

elements of H onto themselves: it represents the symmetry of

the symmetry pattern.

Because the elements of NE(H) map H onto itself, they also

map the weighted reciprocal lattice7 of H onto itself, i.e. they

do not affect the reflection conditions of H. Furthermore, the

inversion never directly affects the reflection conditions;

therefore, to judge whether or not a class IIA twin operation t

affects the reflection conditions of the individual, one simply

needs to see whether the symmetry operation s that corre-

sponds to t belongs to the Laue class L[NE(H)] of the Eucli-

dean normalizer of H or not.

As pointed out by Koch (2004), L[NE(H)] corresponds to

the holohedry for all H but Pa3. For the latter case, NE(H) is

Ia3 and thus L[NE(H)] = m3, whereas the holohedry of Pa3 is

of course m3m. This means that the operations in m3m not

contained in m3 do affect the reflection conditions of Pa3: but

these are precisely the operations in the non-trivial coset of

m3m with respect to m3, i.e. the operations in a class IIA twin

law of an m3 individual. In fact, the reflection conditions of
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Table 4
Classification of the 27 merohedral non-symmorphic space-group types H
in the hexagonal crystal family, which can give rise to 61 twin laws.

Among these, 29 cannot be extended by a twofold operation s corresponding
to the twin operation t (‘no extension’ in the table), and two more have such
an extension but none of the corresponding supergroups G has the same
reflection conditions as H (‘---’ in the table): for these 31 cases (15 for class I
and 16 for class IIA) the G model is ruled out on the basis of the observed
reflection conditions: H in the corresponding row is shown in bold,
accompanied by dashes in the last column. For the other 30 cases, the group
G# having the same reflection conditions as H is given; for two cases, G# is not
a supergroup of H (indicated by superscript *). Entries are ordered according
to the diffraction symbol, as given in LVB.

Diffraction symbol H No. t G# No.

Non-centrosymmetric hemihedral (only class I twinning possible)
P--c P63mc 186 �11 P63/mmc 194

P�662c 190
P-c- P63cm 185 P63/mcm 193

P�66c2 188
R-c R3c 161 R�33c 167
P63-- P6322 182 --- ---
P62-- P6222 180 no extension ---

P6422 181 no extension ---
P61-- P6122 178 no extension ---

P6522 179 no extension ---
P-cc P6cc 184 P6/mcc 192

Centrosymmetric hemihedral (only class IIA twinning possible)
P63-- P63/m 176 m[100] --- ---
P--c P�331c 163 m[001] P63/mmc 194
P-c- P�33c1 165 m[001] P63/mcm 193

Tetartohedral or ogdohedral (both class I and class IIA twinning possible)
P31-- P31 144 �11 no extension ---

2[210] P3112 151
2[100] P3121 152
2[001] P64 172
m[001] no extension ---
m[100] no extension ---
m[210] no extension ---

P3112 151 �11 no extension ---
2[001] P6422 181
m[001] no extension ---

P3121 152 �11 no extension ---
2[001] P6422 181
m[001] no extension ---

P32 145 �11 no extension ---
2[210] P3212 153
2[100] P3221 154
2[001] P62 171
m[001] no extension ---
m[100] no extension ---
m[210] no extension ---

P3212 153 �11 no extension ---
2[001] P6222 180
m[001] no extension ---

P3221 154 �11 no extension ---
2[001] P6222 180
m[001] no extension ---

P--c P31c 159 �11 P�331c 163
m[001] P�662c 190
2[001] P63mc* 186

P-c- P3c1 158 �11 P�33c1 165
m[001] P�66c2 188
2[001] P63cm* 185

P63-- P63 173 �11 P63/m 176
2[100] P6322 182
m[100] no extension ---

P62-- P62 171 �11 no extension ---
2[100] P6222 180
m[100] no extension ---

Table 4 (continued)

Diffraction symbol H No. t G# No.

P64 172 �11 no extension ---
2[100] P6422 181
m[100] no extension ---

P61-- P61 169 �11 no extension ---
2[100] P6122 178
m[100] no extension ---

P65 170 �11 no extension ---
2[100] P6522 179
m[100] no extension ---

7 The weighted reciprocal lattice is obtained by assigning to each node of the
reciprocal lattice a ‘weight’ that corresponds to |F(hkl)| (Shmueli, 2008).



Pa3 are 0kl: k = 2n, h00: h = 2n (with cyclic permutation of

h; k; l). Any operation in the twin law (up to cyclic permuta-

tion of h; k; l) brings to overlap 0eu (e = even, u = uneven)

reflections (present) of the first individual with 0ue reflections

(absent) of the second individual so that the observed reflec-

tion conditions become 0kl: k = 2n or l = 2n, h00: h = 2n (with

cyclic permutation of h; k; l), which do not occur in any group

whose conventional cell is primitive, allowing thus the iden-

tification of the presence of class IIA twinning for this parti-

cular case.

The distinction between the t-H and G models is analogous

with the case of class I twinning. In class IIA, there are 29

types of space groups H for which no G# exists for the given t.

If the reflection conditions corresponding to one of these

groups are observed, the G model can be immediately ruled

out. If the refinement is not satisfactory, the presence of

twinning should be reasonably suspected (Tables 3–5).

For the other cases where class IIA twinning is possible, the

diffraction patterns of t-H and G cannot be differentiated

from the reflection conditions, and the measured intensities

obey equation (1). In the presence of diffraction enhancement

of symmetry, a wrong space group might be chosen, but even if

a solution of the structure is apparently obtained, the structure

refinement would not reasonably converge; the presence of

twinning should therefore be suspected. Otherwise, the

distribution of the intensities does not match any of the space-

group types suggested by the reflection conditions, a clear

indication of the presence of twinning. Finally, if G# is not a

supergroup of H (this is the case for H = P31c, P3c1, P213 and

I213, whose G# are, respectively, P63mc, P63cm, P4232, I432

and I �443m), the structure simply cannot be solved in G#.

6. Class IIB twinning

In the case of class IIB twinning, the symmetry of the twin

belongs to a different crystal family than the individual. This is

realized in the presence of a specialized metric, which is not an

intrinsic feature of the crystal but rather an ‘accident’ that

occurs only in a certain range of chemical–physical conditions.

This ‘accident’ seems, however, much more frequent than one

would suspect (Janner, 2004a,b); consequently, class IIB

twinning has to be seriously taken into account. If this type of

twinning is suspected, collecting the diffraction pattern suffi-

ciently far from the conditions giving rise to the metric

specialization should resolve the ambiguity because reflections

that were overlapped appear split. However, because the

presence of twinning is normally not suspected a priori, and

because it is not always possible to run the experiment in

different conditions, a detailed analysis of the effects of class

IIB twinning on the diffraction pattern is certainly of interest

for the experimental crystallographer. As we are going to

show, non-space-group absences are of great help in a large

number of cases. It is also to be emphasized that the discre-

pancy between the metric symmetry and the symmetry of the

intensity distribution is an indication of the possible presence

of class IIB twinning. However, when diffraction enhancement

of symmetry is realized, the discrepancy may no longer occur.

The three models, H, t-H and G, can very often be distin-

guished for class IIB twinning, because only in a limited

number of cases a group G# having point group P0 = hP,ti and

the same reflection conditions as H exists, and because class

IIB twinning does affect the reflection conditions in a large
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Table 5
Classification of the 14 merohedral non-symmorphic space-group types H
in the cubic crystal family, which can give rise to 18 twin laws.

Among these, eight cannot be extended by a twofold operation s
corresponding to the twin operation t (four indicated as ‘no extension’, four
with a * meaning that they do have a G# with the same reflection conditions as
H but this is not a supergroup of H) and six more (indicated by dashes) have
such an extension but none of the corresponding supergroups G has the same
reflection conditions as H. For four of the eight non-existing extensions hH,si,
a G# with the same reflection conditions as H does exist but it is not a
supergroup of H. For the ten cases for which no G# exists (seven for class I and
three for class IIA), the G model is ruled out on the basis of the observed
reflection conditions: H in the corresponding row is shown in bold,
accompanied by dashes in the last column. For the other eight cases, the
group G# having the same reflection conditions as H is given; of these, four are
supergroups of H, the other four, indicated by the superscript *, are not.
Entries are ordered according to the diffraction symbol, as given in LVB.

Diffraction symbol H No. t G# No.

Non-centrosymmetric hemihedral (only class I twinning possible)
P21--, P42-- P4232 208 �11 --- ---
P41-- P4132 213 no extension ---

P4332 212 no extension ---
P--n P�443n 218 Pm�33n 223
I41-- I4132 214 --- ---
I--d I �443d 220 --- ---
F41-- F4132 210 --- ---
F--c F �443c 219 Fm�33c 226

Centrosymmetric hemihedral (only class IIA twinning possible)
Pa-- Pa�33 205 m[110] no extension ---
Pn-- Pn�33 201 m[110] Pn�33m 224
Ia-- Ia�33 206 m[110] --- ---
Fd-- Fd�33 203 m[110] Fd�33m 227

Tetartohedral (both class I and class IIA twinning possible)
P21--, P42-- P213 198 �11 --- ---

2[110] P4232* 208
m[110] no extension ---

I--- I213 199 �11 Im�33� 204
2[110] I432* 211
m[110] I �443m� 217

Figure 1
Graph showing the path through Bravais types of lattices obtained by
metric specialization. Each node represents a Bravais type of lattice, each
edge a possible metric specialization. Modified after Fig. 3 in Grimmer &
Nespolo (2006).
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Table 6
Non-symmorphic space-group types with the corresponding G# (if any) in the crystal family corresponding to the metric specialization given in the first
column by the corresponding standard symbol.

G# has the same reflection conditions as H when expressed in a common setting (* indicates that G# is not a supergroup of H). In bold are the space-group types for
which either an extension in the different crystal family is not possible, or no G# group exists in that crystal family: these are the cases where the G model can be
excluded on the basis of the observed reflection conditions. The ‘incompatible’ entry in the diffraction symbol means that the observed reflection conditions are
incompatible with the different crystal family suggested by the metric: this indication alone is sufficient to rule out the G model. The diffraction symbols for the m
! hR specialization are only apparently different; the change of setting is responsible for this apparent difference. Entries are ordered according to the diffraction
symbol in the different crystal family (crystal family of the twin), as given in LVB.

Metric
specialization

Diffraction
symbol in the
lower family

Diffraction
symbol in the
higher family H No. G# No.

m! o P21 P--21 P21 (� = 90�) 4 P2212 (P2221) 17
P21/m (� = 90�) 11 --- ---

C--21 P21 (a = c) 4 C2221 20
P21/m (a = c) 11 C2221* 20

Pc P-c- Pc (� = 90�) 7 Pmc21 26
P2/c (� = 90�) 13 Pmcm (Pmma) 51

C--(ab) Pc (a = c) 7 Cmme 67
P2/c (a = c) 13 Cmme 67

Cc C-c- Cc (� = 90�) 9 Cmc21 36
C2/c (� = 90�) 15 Cmcm 63

I-(ac)- Cc (cos � = �c/a) 9 Imam (Imma) 74
C2/c (cos � = �c/a) 15 Imam (Imma) 74

incompatible Cc (cos � = a/2c) 9 --- ---
C2/c (cos � = a/2c) 15 --- ---

P21/c incompatible P21/c (both) 14 --- ---
m! t P21 P42-- P21 4 P42* 77

P21/m 11 P42/m* 84
Pc Pn-- P2/c 13 P4/n 85
Cc incompatible C2/c 15 --- ---

m! h P21 P63-- P21 4 P63 173
P21/m 11 P63/m 176

Cc R-c Cc 9 R3c 161
C2/c 15 R�33c 167

o! t P2121- P-21- P21212 18 P4212, P�4421m 90, 113
P--21 P42-- P2221 17 P4222* 93
C--21 C2221 20 P4222* 93
P212121 P4221- P212121 19 P42212* 94
Ccc- P--c Ccc2 37 P42mc, P�442c 105, 112

Cccm 66 P42/mmc 131
Pba- P-b- Pba2 32 P4bm, P�44b2 100, 117

Pbam 55 P4/mbm 127
Pcc- P-c- Pcc2 27 P42cm, P�44c2 101, 116

Pccm 49 P42/mcm 132
Pnn- P-n- Pnn2 34 P42nm, P�44n2 102, 118

Pnnm 58 P42/mnm 136
P--n Pn-- Pmmn 59 P4/nmm 129
C--(ab) Cmme 67 P4/nmm 129
Ccce Pn-c Ccce 68 P42/nmc 137
Pban Pnb- Pban 50 P4/nbm 125
Pccn Pnc- Pccn 56 P42/ncm 138
Pnnn Pnn- Pnnn 48 P42/nnm 134
I--- I--- I212121 24 I422* 97
Fdd- I--d Fdd2 43 I41md, I �442d 109, 122
Iba- I-c- Iba2 45 I4cm, I �44c2 108, 120

Ibam 72 I4/mcm 140
Fddd Ia-d Fddd 70 I41/amd 141
P--a incompatible Pmma 51 no extension ---
P-a- Pma2 28 no extension ---
P-c- Pmc21 26 no extension ---
P-n- Pmn21 31 no extension ---
P-na Pmna 53 no extension ---
Pn-a Pnma 62 no extension ---
Pca- Pca21 29 no extension ---
Pnc- Pnc2 30 no extension ---
Pna- Pna21 33 no extension ---
Pbc- Pbcm 57 no extension ---
Pbca Pbca 61 no extension ---
Pbcn Pbcn 60 no extension ---
Pcca Pcca 54 no extension ---
Pnna Pnna 52 no extension ---



number of cases, thus making H and t-H often distinguishable

on the basis of the observed reflection conditions. The metric

specializations leading to a different crystal family are shown

in Fig. 1.

6.1. Differentiating H and G models in class IIB twinning

For a symmorphic space group H, there always exists a

symmorphic supergroup G# = hH,si in the higher crystal family

corresponding to the specialized metric that has the same

reflection conditions as H. Therefore, for a symmorphic space

group the reflection conditions never allow one to discrimi-

nate between the H and the G models. Furthermore, the

search for G# in the case of class IIB twinning is limited to

cases when P0 is a minimal supergroup of P: further steps do

not need to be considered explicitly because they either

correspond to class IIA twinning possibly accompanying class

IIB twinning (when the supergroup stays in the same crystal

family) or to a further ascent in the crystal families, which is

considered independently (for example, a cubic specialization

of a monoclinic metric can be considered as a two-step

process, the first one being an orthorhombic or a tetragonal

specialization, the second step the cubic specialization of the

latter). The analysis of non-symmorphic space groups is given

in Table 6 and the results can be summarized in the following

remarks.

(i) Non-symmorphic space groups with a specialized metric

that can have a G# supergroup in a different crystal family

belong to the monoclinic, orthorhombic, tetragonal and

hexagonal (rhombohedral lattice) crystal families.

(ii) Some space groups have more than one possible metric

specialization leading to a G# supergroup (Fig. 1). This is the

case for monoclinic H with specialized orthorhombic, tetra-

gonal, hexagonal (via oS), rhombohedral (if the conventional

unit cell is C-centred) or cubic metric, and for orthorhombic H

with specialized tetragonal, cubic or hexagonal (if the

conventional unit cell is S-centred) metric.

(iii) Orthorhombic space groups with a tetragonal metric

but with different types of glides on [100] and [010] have no

tetragonal extensions; furthermore, if the diffraction pattern is

indexed with respect to tetragonal axes, inconsistent reflection

conditions are observed on reciprocal planes that should be

equivalent, a clear sign of the lower structural symmetry with

respect to the lattice symmetry. In particular, a diffraction

symbol cannot be written in the tetragonal setting: this is the

meaning of the entries ‘incompatible’ in Table 6. The same

occurs for non-holoaxial orthorhombic groups or C-centred

monoclinic groups with a hexagonal metric (where it is

impossible to have three sets of equivalent planes). If such a

contradiction between the observed reflection conditions and

the metric of the unit cell is observed, the G model can be

excluded a priori.

(iv) Because only two cases of cubic G# for a tetragonal H

occur, Table 6 gives these two examples only, without listing all

the others as having no G#.

The procedure to derive the conditions expressed in Table 6

can be illustrated with the example of an oS specialization of

an mP crystal obtained when a = c, which is particularly

instructive. Five types of monoclinic non-symmorphic groups

have an mP type of lattice: P21, P21/m, Pc, P2/c and P21/c.

They can be gathered in three sets having the same reflection

conditions (Fig. 2). A b-unique mP crystal can always be

described with an mB cell, mP and mB corresponding just to a

change of axes. The space-group symbols and the reflection
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Table 6 (continued)

Metric
specialization

Diffraction
symbol in the
lower family

Diffraction
symbol in the
higher family H No. G# No.

C-c- Cmc21 36 no extension ---
Cmcm 63 no extension ---

C-c(ab) Cmce 64 no extension ---
A-a- Ama2 40 no extension ---
A(bc)-- Aem2 39 no extension ---
A(bc)a- Aea2 41 no extension ---
I--a Imma 74 --- ---
I-a- Ima2 46 no extension ---
Ibca Ibca 73 --- ---

o! h C--21 P63-- C2221 20 P6322 182
C-c- incompatible Cmc21 36 --- ---
Ccc- Ccc2 37 --- ---
A-a- Ama2 40 --- ---
C-c- Cmcm 63 --- ---
Ccc- Cccm 66 --- ---

o! c P212121 P21--, P42 P212121 19 P213 198
Pbca Pa-- Pbca 61 Pa�33 205
Pnnn Pn-- Pnnn 48 Pn�33 201
I--- I--- I212121 24 I213 199
Ibca Ia-- Ibca 73 Ia�33 206
Fddd Fd-- Fddd 70 Fd�33 203

t! c P4221- P21--, P42 P42212 94 P4232* 208
Pnn- Pn-- P42/nnm 134 Pn�33m 224

h! c R-c F--c R3c 161 F �443c 219
R�33c 167 Fm�33c 226



conditions for this non-standard setting change accordingly as

shown in Fig. 2. The result can equally be described in a

c-unique mC setting. If one now assumes a metric specializa-

tion a = c for the original mP setting, the centred cells become

orthorhombic, which means that the crystal is described in an

oB (b-unique setting) or oC (c-unique setting) cell. The

diffraction symbol corresponding to the reflection conditions

in the oC setting is given in the last column of Fig. 2. There we

see that the metric specialization leads to G# = C2221 (only

possible type of space group for the diffraction symbol C--21)

for P21, and to Cmme (only possible type of space group for

the diffraction symbol C--e) for Pc and P2/c. On the other

hand, the reflection conditions of P21/m with an oC metric

specialization correspond again to C2221, which is not a

supergroup of P21/m, and those of P21/c do not correspond to

any orthorhombic group. In fact, the diffraction symbol one

would obtain by reading off the P21/c reflection conditions in

the oC setting would be C--21/(ab), which does not correspond

to any type of space group. This should be a clear indication of

the presence of twinning.

With analogous arguments it is easy to show that an oI

metric specialization of a non-symmorphic mC crystal (space

group of type Cc or C2/c), obtained if cos � = �c/a, leads to

reflection conditions I-a- which correspond to G# = Imam

(Imma in the standard setting). On the other hand, an oF

metric specialization of the same mC crystal, obtained if cos �
= 2a/c, leads to reflection conditions Fd--, which do not

correspond to any orthorhombic type of space group: Table 6

shows the entry ‘incompatible’ in such a case.

Table 6 shows that for 33 types of space groups with

specialized metric, the reflection conditions are not compa-

tible with a group in the higher crystal family: the G model can

then be ruled out on simple inspection of the reflection

conditions. Furthermore, in eight cases G# is not a supergroup

of H; in seven of these, a structure solution cannot be obtained

in G#, a clear indication of the presence of twinning. The

eighth case corresponds to the oC (a = c) specialization of

P21/m, for which G# = C2221 is a supergroup of the P21 non-

centrosymmetric maximal subgroup of H: in the absence of

resonant scattering, a structure solution can be obtained but

the lack of inversion centre in the adopted model would leave

anomalies, for example in the description of the thermal

motion of the atoms, which should prompt the investigator to

check a centrosymmetric group. However, the centrosym-

metric supergroup of C2221 (Cmcm) has additional reflection

conditions which are violated in the diffraction pattern of a

P21/m crystal with oC metric specialization.

6.2. Differentiating H and t-H models in class IIB twinning

In metric merohedry one has to compare the reflection

conditions of H modified by t with those of any group

belonging to a different crystal family: when they coincide, an

ambiguity may in principle exist, but in many cases the result is

actually unambiguous, as we are going to see.

The number of twin laws potentially modifying the reflec-

tion conditions of H is rather large, but one can significantly

reduce the number of cases to be considered by the aid of the

normalizers. In class IIB twinning, this analysis is no longer

limited to the Euclidean normalizers but has to make use of

the affine normalizers, i.e. the normalizers of H with respect to

the group of all affine mappings, which are no longer restricted

to isometries but include also deformations – those deforma-

tions necessary to specialize the metric of H to that of G. The

affine normalizer does not depend on the metrical properties

of the space group, while the Euclidean normalizer does.

Therefore, in general a space group may have more than one

Euclidean normalizer, depending on the metric specialization.

Space groups are classified, in terms of their normalizers, as

follows (Koch et al., 2006):

(i) Cubic, hexagonal, trigonal and tetragonal space groups,

as well as 21 types of orthorhombic space groups in which the

symmetry elements along the crystallographic axes are of the

same type, have only one type of Euclidean normalizer, which

also coincides with the affine normalizer.

(ii) The other 38 types of orthorhombic space groups have

more than one Euclidean normalizer, as a function of the

metric specialization; the affine normalizer coincides with the

highest-symmetry Euclidean normalizer.
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Figure 2
Scheme showing how the reflection conditions of non-symmorphic space
groups with mP lattice and metric specialization a = c are transformed by
the choice of a B-centred cell, then transformed to a C-centred c-unique
setting. The last column shows the corresponding orthorhombic
diffraction symbol. For P21/c, the diffraction symbol is in parentheses
because it does not correspond to any orthorhombic space group: a
distinction is therefore possible, provided the investigator does not miss
the fact that the condition h0l: l = 2n, which would correspond to C-c(ab),
is missing.
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Table 7
Effect of class IIB twinning on the reflection conditions of tetragonal crystals with a cubic metric.

Space-group types with the same reflection conditions are listed in a single entry, ordered according to the diffraction symbol in the lower crystal family, as in LVB.
When the action of a twin operation modifies the reflection conditions in such a way that they become equivalent to those of one or more cubic groups, the
corresponding cubic diffraction symbol is given, otherwise the entry ‘incompatible’ occurs. The structure of the table follows that used by LVB, e.g. l is used as a
shorthand notation for l = 2n, but equivalent reflection conditions on 0kl and h0l are given explicitly because they may be differently affected by incomplete
twinning. Reflection conditions modified by the twin operations are shown in bold; when the twin operation annihilates a set of reflection conditions, the entry
‘ann’ is shown. A comma stands for the Boolean and (as in LVB), a forward slash stands for the Boolean or (never occurring for untwinned crystals). Twin
operations producing non-space-group absences are shown in bold. Monoclinic space groups with a tetragonal normalizer whose fourfold axis is along the
monoclinic twofold axis are listed here because their diffraction symbol, when expressed in the tetragonal setting of the normalizer, corresponds to a tetragonal
group (see x6.2).

Diffraction
symbol in the
lower crystal
family H No.

Twin
operation
(coset
representative)

Diffraction
symbol in the
different crystal
family hkl hk0 0kl h0l hhl hh�h hh0 00l 0k0 h00

P-21- P4212 90 k h
P�4421m 113

4[100] incompatible ann h
4[010] incompatible k ann
both P--- ann ann

P42-- P42 77 l
P42/m 84
P4222 93

any P--- ann
P4221- P42212 94 P21--, P42-- l k h

any P21--, P42-- l k h
P41-- P41 76 l = 4n

P43 78
P4122 91
P4322 95

any P--- ann
P4121- P41212 92 l = 4n k h

P43212 96
any P21--, P42-- l k h

P--c P42mc 105 l h l
P�442c 112
P42/mmc 131

any incompatible ann h ann
P-21c P�4421c 114 l h l k h

any incompatible ann h l k h
P-b- P4bm 100 k h k h

P�44b2 117
P4/mbm 127

4[100] incompatible k/l ann ann h
4[010] incompatible ann h/l k ann
both P--- ann ann ann ann

P-bc P42bc 106 k h l h l k h
P42/mbc 135

4[100] incompatible k/l ann ann h l k h
4[010] incompatible ann h/l ann h l k h
both incompatible ann ann ann h l k h

P-c- P42cm 101 l l l
P�44c2 116
P42/mcm 132

4[100] incompatible k/l ann ann
4[010] incompatible ann h/l ann
both P--- ann ann ann

P-cc P4cc 103 l l l h l
P4/mcc 124

4[100] incompatible k/l ann ann h ann
4[010] incompatible ann h/l ann h ann
both incompatible ann ann ann h ann

P-n- P42nm 102 k+l h+l l k h
P�44n2 118
P42/mnm 136

4[100] incompatible k+l ann l k h
4[010] incompatible ann h+l l k h
both P21--, P42-- ann ann l k h

P-nc P4nc 104 k+l h+l l h l k h
P4/mnc 128

4[100] incompatible k+l ann ann h l k h
4[010] incompatible ann h+l ann h l k h
both incompatible ann ann ann h l k h
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Table 7 (continued)

Diffraction
symbol in the
lower crystal
family H No.

Twin
operation
(coset
representative)

Diffraction
symbol in the
different crystal
family hkl hk0 0kl h0l hhl hh�h hh0 00l 0k0 h00

Pn--† P4/n 85 h+k k h
P4/nmm 129
P1c1 7
P12/c1 13
Cc 9
C2/c 15

4[100] incompatible ann ann h
4[010] incompatible ann k ann
both P--- ann ann ann

P42n-‡ P42/n 86 h+k l k h
P121/c1 14

any P21--, P42-- ann l k h
Pn-c P42/nmc 137 h+k l h l k h

any incompatible ann ann h l k h
Pnb- P4/nbm 125 h+k k h k h

4[100] incompatible h/h+k k/l h/h+l ann h
4[010] incompatible k/h+k k/k+l h/l k ann
both P--- ann ann ann ann ann

Pnbc P42/nbc 133 h+k k h l h l k h
4[100] incompatible h/h+k k/l h/h+l ann h l k h
4[010] incompatible k/h+k k/k+l h/l ann h l k h
both incompatible ann ann ann ann h l k h

Pnc- P42/ncm 138 h+k l l l k h
4[100] incompatible k/h+k k/l l/h+l l k h
4[010] incompatible h/h+k l/k+l h/l l k h
both P21--, P42-- ann ann ann l k h

Pncc P4/ncc 130 h+k l l l h l k h
4[100] incompatible k/h+k k/l l/h+l ann h l k h
4[010] incompatible h/h+k l/k+l h/l ann h l k h
both incompatible ann ann ann ann h l k h

Pnn- P42/nnm 134 h+k k+l h+l l k h
any Pn-- h+k k+l h+l l k h

Pnnc P4/nnc 126 h+k k+l h+l l h l k h
any incompatible h+k k+l h+l ann h l k h

I41-- I41 80 h+k+l h+k k+l h+l l h l = 4n k h
I4122 98

any I--- h+k+l h+k k+l h+l l h l k h
I--d I41md 109 h+k+l h+k k+l h+l § h = 4n h l = 4n k h

I �442d 122
any incompatible h+k+l h+k k+l h+l l h = 4n ann l k h

I-c- I4cm 108 h+k+l h+k k,l h,l l h l k h
I �44c2 120
I4/mcm 140

4[100] incompatible h+k+l h+k k,l h+l l h l k h
4[010] incompatible h+k+l h+k k+l h,l l h l k h
both I--- h+k+l h+k k+l h+l l h l k h

I-cd I41cd 110 h+k+l h+k k,l h,l § h = 4n h l = 4n k h
4[100] incompatible h+k+l h+k k,l h+l l h = 4n h l k h
4[010] incompatible h+k+l h+k k+l h,l l h = 4n h l k h
both incompatible h+k+l h+k k+l h+l l h = 4n h l k h

I41/a-- I41/a 88 h+k+l h,k k+l h+l l h h l = 4n k h
any I--- h+k+l h+k k+l h+l l h ann l k h

Ia-d I41/amd 141 h+k+l h,k k+l h+l § h = 4n h l = 4n k h
any incompatible h+k+l h+k k+l h+l l h = 4n ann l k h

Iacd I41/acd 142 h+k+l h,k k,l h,l § h = 4n h l = 4n k h
any incompatible h+k+l h,k k,l h,l l h = 4n h l k h

† The monoclinic groups P1c1, P12/c1, Cc and C2/c with specialized metric a = c1/2, � = 135� have a tetragonal normalizer and their diffraction symbol is Pn– when expressed in the
tetragonal setting. See x6.2. ‡ The monoclinic group P121/c1 with specialized metric a = c1/2, � = 135� has a tetragonal normalizer and its diffraction symbol is P42/n– when expressed in
the tetragonal setting. See x6.2. § 2hþ l ¼ 4n.



(iii) Affine normalizers of monoclinic and triclinic space

groups are not isomorphic to any group of motions and cannot

be characterized by a space-group symbol.

The above classification is based on the fact that a metric

specialization does not necessarily increase the symmetry of

the normalizer. This is the case, for example, for tetragonal

space groups: in fact, the normalizer acts on the types of

symmetry elements, but a tetragonal space group has only a

single fourfold axis, even if c = a, and this axis is not fixed by a

fourfold rotation about [100] or [010]. Similarly, Pcca (one of

the 21 types of orthorhombic space-group types having only

one Euclidean normalizer) is not self-conjugate by a fourfold

rotation about [001] even if a = b, because it has twofold axes

along [100] but twofold screw axes along [010]. Therefore,

Pcca has only one Euclidean normalizer, Pmmm (basis vectors

of the normalizer: a/2, b/2, c/2), which is also its affine

normalizer. On the other hand, Pbam has the same type of

symmetry elements (twofold screw axes) along [100] and [010]

and perpendicular to them [a glide plane whose glide

component is along the other axis in the (001) plane] so that

for a = b the two directions become equivalent. Pbam there-

fore has two Euclidean normalizers: Pmmm a/2, b/2, c/2, if a 6¼

b, and P4/mmm a/2, b/2, c/2, if a = b; the latter is also the affine

normalizer. Since the m mirror perpendicular to [001] is of a

different nature with respect to the glide planes b and a, this

type of space group has no cubic normalizer even in the case of

a cubic metric (a = b = c).

When dealing with twins, one has to consider the possibility

of a higher-order rotation about an axis as a consequence of

metric specialization, even if that rotation does not belong to

the affine normalizer of the space group. In the case where the

normalizer increases as a function of the metric specialization,

the reflection conditions are not influenced by class IIB

twinning, whereas for the other cases the effect of class IIB

twinning on the reflection conditions has to be explicitly

worked out. In other terms, space-group types have to be

classified in terms of the effect of a metric specialization on

both the symmetry of the lattice and the Euclidean normalizer.

Symmorphic types of space groups only possess integral

reflection conditions, and this only if their conventional unit

cell is not primitive. A twin operation t may affect the integral

reflection conditions only if t is not compatible with the

conventional unit cell of the individual: for example, a 4[010]

rotation when the conventional cell is A- or B-centred brings

to overlap present reflections from an individual with absent

reflections from another individual, whereas it has no influ-

ence if the conventional unit cell is C-, I- or F-centred.

Therefore, in the following analysis only those symmorphic

space-group types whose conventional unit cell is not

compatible with t are considered, the others having their

reflection conditions unaffected by t.

(a) The symmetry of the lattice of cubic, hexagonal and

trigonal crystals with hexagonal lattices cannot be increased

by a metric specialization; therefore, these crystal systems

never give class IIB twinning.

(b) The symmetry of the lattices of trigonal crystals with

rhombohedral lattices is increased to cubic by metric specia-

lization (to cP, cF and cI when � = 90�, 60� and 109.47�,

respectively), but the affine normalizer is either rhombohedral

or hexagonal.

(c) The lattice of tetragonal crystals becomes cubic in the

presence of a metric specialization (c = a); however, tetragonal

space groups have only one Euclidean (and thus also affine)

normalizer, which is still tetragonal; class IIB twinning does in

general affect the reflection conditions of tetragonal crystals

(Table 7).

(d) For the 21 types of orthorhombic space groups that have

only one type of Euclidean normalizer, the same conclusion as

for the tetragonal space groups holds.

(e) Among the 38 types of orthorhombic space groups with

more than one Euclidean normalizer, two subtypes have to be

distinguished (Table 8).

(i) Space groups for which metric specialization enhances

the Euclidean normalizer up to cubic symmetry are not

influenced in their reflection conditions by class IIB twinning

(see, however, the special case of Pbca described below).

(ii) Space groups for which metric specialization

enhances the Euclidean normalizer only up to tetragonal

symmetry do not show any effect on their reflection conditions

when class IIB twinning corresponds to a tetragonal metric

with a = b, while class IIB twinning according to a cubic metric

or a tetragonal metric with a = c or b = c does affect the

reflection conditions.

(f) Monoclinic space groups with an orthorhombic metric

specialization may simulate the reflection conditions of an

orthorhombic crystal, as shown in Fig. 2 and Table 6; class IIB

twinning does not influence the reflection conditions because

the twin operations can only be twofold rotations about

symmetry directions of an orthorhombic lattice and mirror

reflections across planes normal to them. The same is true for

the hR specialization of mS crystals (Table 6). All monoclinic

groups have tetragonal normalizers, which however may

correspond to three different metric specializations (see Koch

et al., 2006). The first, ‘trivial’, specialization is obtained for a =

c and � = 90�, for which the fourfold axis is along the mono-

clinic c axis: it occurs for P2, P21, Pm, P2/m and P21/m. The

reflection conditions of the symmorphic groups are not

affected by class IIB twinning, while the effect on P21 and

P21/m is the same as that on the orthorhombic group P2221,

which in fact has the same diffraction symbol if the monoclinic

unique axis is oriented to coincide with the orthorhombic c

axis. For all the other monoclinic groups, this metric speciali-

zation corresponds to a normalizer that is only orthorhombic.

The non-trivial tetragonal metric specialization is realized in

two different ways, depending on whether the conventional

unit cell is primitive or centred (c = a1/2, � = 135� for Pc, P2/c

and P21/c; a = c1/2, �= 135� for C2, Cm, Cc, C2/m and C2/c): the

fourfold axis of the normalizer is now along the monoclinic b

axis. These groups have the same reflection conditions of

tetragonal groups (when expressed in the tetragonal setting)

and thus undergo the same effect of class IIB twinning.

(i) Pc and P2/c on the one hand, and Cc and C2/c on the

other hand, have diffraction symbols P1c1 and C1c1, respec-

tively (in the b-unique setting); in the tetragonal setting
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Table 8
Effect of class IIB twinning on the reflection conditions of orthorhombic or monoclinic crystals with a tetragonal or cubic metric.

A fourfold rotation about an axis is possible only in correspondence with a metric specialization in the plane perpendicular to that axis. When a cubic or tetragonal
Euclidean normalizer exists in correspondence with the metric specialization, that normalizer is indicated and the corresponding twin operation has no effect on
the reflection conditions. The basis vectors of the Euclidean normalizer are always a/2, b/2, c/2 except when the Euclidean normalizer has a continuous translation
along one or two axes (symbol containing P1 or P2), in which case the basis vectors contain an infinitesimal translation along one or two directions. Symmorphic
types of space groups with a conventional unit cell of type P, I or F are not shown because they only have integral reflection conditions that are not affected by the
twin operations. The same conventions are adopted as for Table 7. Entries are ordered according to the diffraction symbol in the lower crystal family (crystal family
of the individual), as given in LVB.

Diffraction
symbol
in the
lower
crystal
family H No.

Twin
operation
(coset
represen-
tative)

Diffraction
symbol
in the
different
crystal
family hkl hk0 0kl h0l 00l 0k0 h00

Specialized
metric

Euclidean
normalizer

P--21 P1121 4 l a = b, � = 90� P14/mmm
P1121/m 11 a = b, � = 90� P4/mmm
P2221 17 a = b P42/mmc

any P--- ann
P2121- P21212 18 k h a = b P4/mmm

4[001] P-21- k h
4[100] P42-- ann h
4[010] P42-- k ann
all P--- ann ann

P212121 P212121 19 l k h a = b 6¼ c P42/mmc
a = b = c Pm�33n

any P4221- l k h
P--a Pmma 51 h h --- Pmmm

4[001] incompatible h/k ann
4[100] P42-- ann h
4[010] P--- ann ann
all P--- ann ann

P--n Pmmn 59 h+k k h a = b P4/mmm
4[001] Pn-- h+k k h
4[100] P42-- ann ann h
4[010] P42-- ann k ann
all P--- ann ann ann

P-a- Pma2 28 h h --- P1mmm
4[001] P--- ann ann
4[100] P42-- ann h
4[010] incompatible h/l ann
all P--- ann ann

P-c- P1c1 7 l l � = 90� P2mmm
P12/c1 13 � = 90� Pmmm
Pmc21 26 --- P1mmm

4[001] P42-- ann l
4[100] P--- ann ann
4[010] incompatible h/l ann
all P--- ann ann

P-21/c- P121/c1 14 l l k � = 90� Pmmm
4[001] P42-- ann l ann
4[100] incompatible ann l k
4[010] incompatible h/l ann k
all P--- ann ann ann

P-n- Pmn21 31 h+l l h --- P1mmm
4[001] P42-- ann l ann
4[100] P42-- ann ann h
4[010] Pn-- h+l l h
all P--- ann ann ann

P-na Pmna 53 h h+l l h --- Pmmm
4[001] incompatible h/k ann l ann
4[100] incompatible h/h+k h/h+l ann h
4[010] Pn-- ann h+l l h
all P--- ann ann ann ann

Pba- Pba2 32 k h k h a = b P14/mmm
Pbam 55 P4/mmm

4[001] P-b- k h k h
4[100] incompatible k/l ann ann h
4[010] incompatible ann h/l k ann
all P--- ann ann ann ann
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Table 8 (continued)

Diffraction
symbol
in the
lower
crystal
family H No.

Twin
operation
(coset
represen-
tative)

Diffraction
symbol
in the
different
crystal
family hkl hk0 0kl h0l 00l 0k0 h00

Specialized
metric

Euclidean
normalizer

Pban Pban 50 h+k k h k h a = b P4/mmm
4[001] Pnb- h+k k h k h
4[100] incompatible h/h+k k/l h/h+l ann h
4[010] incompatible k/h+k k/k+l h/l k ann
all P--- ann ann ann ann ann

Pbc- Pbcm 57 k l l k --- Pmmm
4[001] incompatible k/l h/l l ann
4[100] incompatible k/l ann l k
4[010] incompatible ann h/l ann k
all P--- ann ann ann ann

Pbca Pbca 61 h k l l k h a = b = c Pm�33
any incompatible h/k k/l h/l l k h

Pbcn Pbcn 60 h+k k l l k h --- Pmmm
4[001] incompatible h+k k/l h/l l k h
4[100] incompatible k/h+k k/l l/h+l l k h
4[010] incompatible k/h+k k/k+l h/l l k h
all incompatible k/h+k ann ann l k h

Pca- Pca21 29 l h l h --- P1mmm
4[001] incompatible k/l h/l l ann
4[100] incompatible k/l ann ann h
4[010] incompatible ann h/l l h
all P--- ann ann ann ann

Pcc- Pcc2 27 l l l a = b P14/mmm
Pccm 49 P4/mmm

4[001] P-c- l l l
4[100] incompatible k/l ann ann
4[010] incompatible ann h/l ann
all P--- ann ann ann

Pcca Pcca 54 h l l l h --- Pmmm
4[001] incompatible h/k l l l ann
4[100] incompatible h/k k/l h/l ann h
4[010] incompatible h l h/l l h
all incompatible h/k k/l h/l ann ann

Pccn Pccn 56 h+k l l l k h a = b P4/mmm
4[001] Pnc- h+k l l l k h
4[100] incompatible k/h+k k/l l/h+l l k h
4[010] incompatible h/k l/k+l h/l l k h
all P21--, P42/-- ann ann ann l k h

Pn-a Pnma 62 h k+l l k h --- Pmmm
4[001] incompatible h/k ann l k h
4[100] P42/n-- ann k+l l k h
4[010] incompatible h/h+k l/k+l l k h
all P21--, P42/-- ann ann l k h

Pna- Pna21 33 k+l h l k h --- P1mmm
4[001] incompatible k/k+l h/h+l l k h
4[100] P42/n-- k+l ann l k h
4[010] incompatible ann h/l l k h
all P21--, P42/-- ann ann l k h

Pnc- Pnc2 30 k+l l l k --- P1mmm
4[001] incompatible l/k+l l/h+l l ann
4[100] Pn-- k+l ann l k
4[010] incompatible ann l/h+l ann k
all P--- ann ann ann ann

Pnn- Pnn2 34 k+l h+l l k h a = b P14/mmm
Pnnm 58 P4/mmm

4[001] P-n- k+l h+l l k h
4[100] P42/n-- k+l ann l k h
4[010] P42/n-- ann h+l l k h
all P21--, P42/-- ann ann l k h

Pnna Pnna 52 h k+l h+l l k h --- Pmmm
4[001] incompatible h/k k+l h+l l k h
4[100] incompatible h/h+k k+l h/h+l l k h
4[010] incompatible h/h+k l/k+l h+l l k h
all P21--, P42/-- ann ann ann l k h
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Table 8 (continued)

Diffraction
symbol
in the
lower
crystal
family H No.

Twin
operation
(coset
represen-
tative)

Diffraction
symbol
in the
different
crystal
family hkl hk0 0kl h0l 00l 0k0 h00

Specialized
metric

Euclidean
normalizer

Pnnn Pnnn 48 h+k k+l h+l l k h a = b 6¼ c P4/mmm
a = b = c Pm�33m

all Pnn- h+k k+l h+l l k h
C---† C121 5 h+k h+k k h k h � = 90� P1mmm

C1m1 8 P2mmm
C12/m1 12 Pmmm
C222 21 a = b P4/mmm
Cmm2 35 P14/mmm
Cmmm 65 P4/mmm

4[001] P---‡ h+k h+k k h k h
4[100] incompatible h+k/h+l h/h+k k/l h/h+l ann h
4[010] incompatible h+k/k+l k/h+k k/k+l h/l k ann
all P--- ann ann ann ann ann ann

C--21 C2221 20 h+k h+k k h l k h a = b P42/mmc
4[001] incompatible h+k h+k k h l k h
4[100] incompatible h+k/h+l h/h+k k/l h/h+l l k h
4[010] incompatible h+k/k+l k/h+k k/k+l h/l l k h
all P21--, P42-- ann ann ann ann l k h

C--(ab) Cmme 67 h+k h,k k h k h a = b P4/mmm
4[001] Pn-- h+k h,k k h k h
4[100] incompatible h+k,h+l h k/l h ann h
4[010] incompatible h+k,k+l k k h/l k ann
all incompatible ann h/k k/l h/l ann ann

C-c- C1c1 9 h+k h+k k h,l l k h � = 90� P2mmm
C12/c1 15 � = 90� Pmmm
Cmc21 36 --- P1mmm
Cmcm 63 --- Pmmm

4[001] P42-- h+k h+k k h l k h
4[100] incompatible h+k/h+l h+k k/l h+l l k h
4[010] incompatible h+k/k+l k/h+k k/k+l h,l l k h
all incompatible ann k/h+k ann h/h+l l k h

C-c(ab) Cmce 64 h+k h,k k h,l l k h --- Pmmm
4[001] P42/n-- h+k h,k k h l k h
4[100] incompatible h+k,h+l h,k k/l h,l l k h
4[010] incompatible h+k,k+l k k h,l l k h
all incompatible ann k k/l h l k h

Ccc- Ccc2 37 h+k h+k k,l h,l l k h a = b P14/mmm
Cccm 66 a = b P4/mmm

4[001] P-c- h+k h+k k,l h,l l k h
4[100] incompatible h+k/h+l h+k k,l h+l l k h
4[010] incompatible h+k/k+l h+k k+l h,l l k h
all Pnn- ann h+k k+l h+l l k h

Ccc(ab) Ccce 68 h+k h,k k,l h,l l k h a = b P4/mmm
4[001] Pn-c h+k h,k k,l h,l l k h
4[100] incompatible h+k,h+l h,k k,l h,l l k h
4[010] incompatible h+k,k+l h,k k,l h,l l k h
all incompatible ann h,k k,l h,l l k h

A--- Amm2 38 k+l k k+l l l k --- P1mmm
4[001] incompatible h+l/k+l h/k l/k+l l/h+l l ann
4[100] P--- k+l k k+l l l k
4[010] incompatible h+k/k+l k/h+k k/k+l h/l ann k
all P--- ann ann ann ann ann ann

A-a- Ama2 40 k+l k k+l h,l l k h --- P1mmm
4[001] incompatible h+l/k+l h/k k+l h+l l k h
4[100] P42/n-- k+l k k+l l l k h
4[010] incompatible h+k/k+l k/h+k k/k+l h,l l k h
all incompatible ann k/h+k k/k+l h/h+l l k h

A(bc)-- Aem2 39 k+l k k,l l l k --- P1mmm
4[001] incompatible h+l/k+l h/k l l l ann
4[100] Pn-- k+l k k,l l l k
4[010] incompatible h+k/k+l k k h/l ann k
all incompatible ann h/k k/l h/l ann ann

A(bc)a- Aea2 41 k+l k k,l h,l l k h --- P1mmm
4[001] incompatible h+l/k+l h/k k,l h,l l k h
4[100] P--c k+l k k,l l l k h



corresponding to the specialized metric both become Pn-- and

the effect of class IIB twinning on these four groups is the

same as that on P4/n.

(ii) P21/c has diffraction symbol P121/c1 (in the b-unique

setting); in the tetragonal setting corresponding to the

specialized metric it becomes P42/n-- and the effect of class

IIB twinning on this group is the same as that on P42/n.

(iii) C2, Cm and C2/m are symmorphic groups; in the

tetragonal setting corresponding to the specialized metric the

conventional cell is primitive and the diffraction symbol

becomes P--. No effect of class IIB twinning appears from the

reflection conditions.

(g) Triclinic space-group types do not give reflection

conditions and class IIB twinning cannot be recognized from

the reflection conditions; the only indication one may get, if

diffraction enhancement of symmetry is not realized, comes

from the discrepancy between the metric symmetry and the

symmetry of the intensity distribution.

Hereafter, the normalizers are given according to the tables

in Koch et al. (2006). When the twin operation leads to

reflection conditions corresponding to those of some type

of space group, the diffraction symbol is given, following

Looijenga-Vos & Buerger (2006) (indicated as LVB in the

tables); otherwise, the entry ‘incompatible’ already used in

Table 6 is given.

6.2.1. Rhombohedral space-group types. Of the seven

rhombohedral space-group types, five are symmorphic and

show no reflection conditions in rhombohedral axes. The two

non-symmorphic space-group types, R3c and R�33c, differ by an

inversion centre, which does not affect the reflection condi-

tions. It is therefore enough to investigate the effect of class

IIB twinning on one of the two, i.e. R3c, which is also an
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Table 8 (continued)

Diffraction
symbol
in the
lower
crystal
family H No.

Twin
operation
(coset
represen-
tative)

Diffraction
symbol
in the
different
crystal
family hkl hk0 0kl h0l 00l 0k0 h00

Specialized
metric

Euclidean
normalizer

4[010] incompatible h+k/k+l k k h,l l k h
all incompatible ann h/k k l l k h

I--- I212121 24 h+k+l h+k k+l h+l l k h a = b 6¼ c P42/mmc
a = b = c Pm�33n

any I--- h+k+l h+k k+l h+l l k h
I--(ab) Imma 74 h+k+l h,k k+l h+l l k h a = b P42/mmc

4[001] incompatible h+k+l h,k k+l h+l l k h
4[100] I--- h+k+l h+k k+l h+l l k h
4[010] I--- h+k+l h+k k+l h+l l k h
all I--- h+k+l h+k k+l h+l l k h

I-(ac)- Ima2 46 h+k+l h+k k+l h,l l k h --- P1mmm
4[001] I--- h+k+l h+k k+l h+l l k h
4[100] I--- h+k+l h+k k+l h+l l k h
4[010] incompatible h+k+l h+k k+l h,l l k h
all I--- h+k+l h+k k+l h+l l k h

Iba- Iba2 45 h+k+l h+k k,l h,l l k h a = b P14/mmm
Ibam 72 a = b P4/mmm

4[001] I-c- h+k+l h+k k,l h,l l k h
4[100] incompatible h+k+l h+k k,l h+l l k h
4[010] incompatible h+k+l h+k k+l h,l l k h
all I--- h+k+l h+k k+l h+l l k h

Ibca Ibca 73 h+k+l h,k k,l h,l l k h a = b 6¼ c P42/mmc
4[001] incompatible h+k+l h,k k,l h,l l k h a = b = c Pm�33n
4[100] incompatible h+k+l h,k k,l h,l l k h
4[010] incompatible h+k+l h,k k,l h,l l k h
all Ia-- h+k+l h,k k,l h,l l k h

Fdd- Fdd2 43 h+k,h+l,k+l h,k k+l = 4n, k,l h+l = 4n, h,l l = 4n k = 4n h = 4n a = b P14/nbm
4[001] incompatible h+k,h+l,k+l h,k k+l = 4n, k,l h+l = 4n, h,l l = 4n k = 4n h = 4n
4[100] incompatible h+k,h+l,k+l h,k k+l = 4n, k,l h,l l = 4n k = 4n h = 4n
4[010] incompatible h+k,h+l,k+l h,k k,l h+l = 4n, h,l l = 4n k = 4n h = 4n
all F41-- h+k,h+l,k+l h,k k,l h,l l = 4n k = 4n h = 4n

Fddd Fddd 70 h+k,h+l,k+l h+k = 4n, k,k k+l = 4n, k,l h+l = 4n, h,l l = 4n k = 4n h = 4n a = b 6¼ c P42/nnm
a = b = c Pn�33m

4[001] I--d h+k,h+l,k+l h+k = 4n, h,k k+l = 4n, k,l h+l = 4n, h,l l = 4n k = 4n h = 4n
4[100] I--d h+k,h+l,k+l h+k = 4n, h,k k+l = 4n, k,l h+l = 4n, h,l l = 4n k = 4n h = 4n
4[010] I--d h+k,h+l,k+l h+k = 4n, h,k k+l = 4n, k,l h+l = 4n, h,l l = 4n k = 4n h = 4n
all Fd-- h+k,h+l,k+l h+k = 4n, h,k k+l = 4n, k,l h+l = 4n, h,l l = 4n k = 4n h = 4n

† A trivial tetragonal metric specialization for these monoclinic groups corresponds only to an orthorhombic normalizer (see x6.2), but because these are symmorphic groups the effect
of class IIB twinning on their reflection conditions is the same as for their orthorhombic supergroups, which have instead a tetragonal normalizer. ‡ In the presence of a tetragonal
metric, the integral reflection conditions of a space-group type with oC conventional cell disappear when expressed in the conventional tP cell. Furthermore, the zonal reflection
conditions on h0l and 0kl lose their h and k components, respectively. Ditto for space-group types with an oA orthorhombic conventional cell when the tetragonal metric is realized in the
(100) plane.



interesting study case illustrating the general procedure used

to obtain Tables 7 and 8.

The cubic minimal supergroup of 3m is 43m and the index

of P in P0 is [P0:P] = 4. Therefore, three twin laws are obtained

by coset decomposition, each of which can be represented by a

fourfold rotation about a basis vector of the specialized cubic

lattice. The reflection conditions for R3c are hhl: l = 2n and

hhh: h = 2n, which is simply a specialization of the former. A

fourfold rotation about c exchanges h and k, never super-

imposing present reflections from one individual with absent

reflections for other individuals: the twin law represented by

4[001] does not affect the reflection conditions. On the other

hand, 4[100] and 4[010] annihilate all the reflection conditions by

superposing hhl with hlh or lhh, respectively; only the special

case of hhh: h = 2n is not affected, but taken alone these

reflection conditions are not characteristic of any space group.

The two twin laws represented by 4[100] and 4[010] do affect the

diffraction pattern and introduce non-space-group absences

by annihilating part of the reflection conditions of H: this is

enough to differentiate between the H and t-H models,

provided that the investigator does not miss the systematic

character of the absences on the very special class of reflec-

tions hhh.

6.2.2. Tetragonal space-group types. Class IIB twinning of

tetragonal crystals is possible only in the presence of a cubic

specialization of the lattice. The twin operation belongs to the

cubic crystal family and therefore it is contained in a coset of

the cubic P0 with respect to a tetragonal subgroup PM of lowest

index in P0. In fact, if P is holohedral, P0 is itself holohedral; it

is a minimal supergroup of P and the index of P in P0 is [P0:P] =

3. If P is merohedral, [P0:P] can be 3, 6 or 12 while [P0:PM] = 3.

This intermediate group PM corresponds to twinning by

syngonic merohedry (either class I or class IIA) that accom-

panies class IIB twinning in the case of a complete twin, but it

is not necessarily present when the twin is incomplete.

The coset decomposition of P0 in terms of PM gives three

cosets: the PM subgroup and two twin laws, containing the

4[100] and 4[010] rotations, respectively. For example, a crystal

belonging to the geometric crystal class 4 and having a cubic

lattice may undergo class IIB twinning by a 4[100] or 4[010]

rotation. The cubic extension of 4 is 432 and the index of 4 in

432 is 6. The intermediate group PM is 422 and the coset

decomposition of 432 in terms of 422 gives two twin laws, one

containing the fourfold twin axis [100] and the other the

fourfold twin axis [010]. The complete twin of six individuals is

realized when class IIA twinning according to 2h110i is also

present, otherwise the twin is incomplete (N < 6).

Because the affine normalizer of a tetragonal space group is

itself tetragonal, class IIB twinning does in general affect the

reflection conditions of a tetragonal crystal. However, tetra-

gonal space-group types have only two types of conventional

unit cells (P and I) which are among the conventional unit

cells of cubic crystals too (P, I and F): therefore, a class IIB

twin operation belonging to a cubic lattice does not affect the

reflection conditions of the 16 types of tetragonal symmorphic

space groups. The symmetry of the diffraction intensities stays

tetragonal unless the twin of H is complete and the individuals

have all the same volume, in which case it becomes cubic. The

measured diffractions are, however, the unphased sum of the

intensities from each individual and the structure cannot be

solved.

Class IIB twinning affects the reflection conditions of

crystals belonging to the 52 non-symmorphic space-group

types; the analysis is done by applying the two rotations 4[100]

and 4[010], all the other operations being equivalent because

they belong to the same cosets as these (Table 7).

In contrast to International Tables for Crystallography, in

Table 7 the zonal reflection conditions for 0kl and h0l are

given explicitly, because they may be differently affected by

incomplete twinning, therefore breaking the tetragonal

symmetry of the reflection conditions (no similar effect

appears for other symmetry-related reflection conditions, like

those on hhl and h �hhl, which are therefore not separated). This

is for example the case for P421m when only one twin law is

active: the reflection conditions on either 0kl or h0l are

annihilated, but not both.

Inspection of Table 7 shows that:

(i) the twin operations sometimes produce annihilation of

the reflection conditions, thus simulating the diffraction

pattern of a symmorphic space-group type; this occurs for P41,

P42, P43, P4122, P4222, P4322, P42/m for any of the two twin

laws, and P4/n, P4212, P4bm, P421m, P4c2, P4b2, P42cm,

P4/nmm, P4/mbm, P42/mcm when both twin laws are active;

(ii) the twin operations sometimes result in observed

reflection conditions undergoing the cyclic h; k; l permutation

typical of cubic crystals; this occurs for I41, I4122, P42/n, I41/a,

P41212, P42212, P43212, P42/nnm for any of the two twin laws,

and for P42nm, P4n2, P42/mnm, I4cm, I4c2, I4/mcm when both

twin laws are active;

(iii) in all other cases, non-space-group absences occur in

the diffraction pattern of the twin: the entry incompatible is

then shown in the column giving the diffraction symbol. In

fact, the reflection conditions produced by twinning are not

compatible with a cubic space-group type, because the

permutation of h; k; l indices does not occur (for example,

P4/n or P4/nmm when only one twin law is active), or because

the twin operation leaves only an unusual subset of the

original reflection conditions: typical is the case of annihilation

of the reflection conditions on hhl which leaves conditions

only on hh�h (reflection condition: h = 2n or h = 4n: see Table

7) that we have already seen for the rhombohedral space

groups.

For cases (i) and (ii) above, where the presence of twinning

is not evident from the inspection of the diffraction pattern,

the same arguments on the symmetry of the intensities hold as

in the case of the symmorphic space-group types.

6.2.3. Orthorhombic space-group types. Class IIB twinning

of orthorhombic crystals is possible only in the presence of

tetragonal, cubic or hexagonal specializations of the lattice.

The twin operation is contained in a coset of the hexagonal,

cubic or tetragonal P0 with respect to the orthorhombic

subgroup P.

Orthorhombic types of space groups may have different

types of metric specialization: three tetragonal specializations
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(a = b, a = c, and b = c), three hexagonal specializations (a = b

	 31/2 or b = a	 31/2 for oC, a = c	 31/2 or c = a	 31/2 for oB, c

= b 	 31/2 or b = c 	 31/2 for oA; any of them for oF) and a

cubic specialization (a = b = c). Differently from the tetragonal

case, class IIB twinning can here also affect the diffraction

pattern of some symmorphic types of space groups, namely

those with a lattice type not compatible with the metric of the

specialized lattice. This is the case for symmorphic space-

group types with an S type of conventional unit cell; always,

for a cubic specialized metric; in two out of three cases for a

tetragonal specialized metric (A and B for 4[001]; B and C for

4[100]; A and C for 4[010]); and finally of F type if the metric is

hexagonal. Table 8 gives the results for all types of ortho-

rhombic space groups with cubic or tetragonal metric but with

the symmorphic types with a P, I or F type of conventional

unit cell, for which the integral reflection conditions are not

affected by class IIB twinning.

Space-group types with cubic affine normalizer. Eleven

types of orthorhombic space groups (P222, P212121, F222,

I222, I212121, Pmmm, Pnnn, Fmmm, Fddd, Immm, Ibca)

have both tetragonal and cubic Euclidean normalizers,

whose Laue class always corresponds to the holohedry: it

follows that class IIB twinning never affects the reflection

conditions of a space group belonging to one of these 11

types.

The space-group type Pbca is particular in two respects:

first of all, it has orthorhombic and cubic, but no tetragonal

Euclidean normalizers: in fact, pairs of twofold screw axes

are separated by 1
4 along the three crystallographic axes

and a tetragonal specialization of the metric does not

produce a tetragonal normalizer. If, however, the metric is

cubic, the basis vectors of the normalizer become half those

of the space group along all the directions and the 1
4 separation

in the space group becomes 1
2 in the normalizer, i.e. it is

annihilated.

Secondly, the cubic affine normalizer of Pbca is Pm3 (a/2,

b/2, c/2), whose Laue class is m3: a twin operation belonging to

the coset of the cubic holohedry with respect to m3 modifies

the reflection condition of a crystal having a space group of

type Pbca. In fact, the reflection conditions for Pbca are 0kl: k

= 2n, h0l: l = 2n, hk0: h = 2n, h00: h = 2n, 0k0: k = 2n, 00l: l = 2n.

A 4[001] rotation brings to overlap, for example, u0e (present)

reflections with 0ue (absent), e0u (absent) with 0eu (present)

and so on, resulting in the observed reflection conditions h0l: h

or l = 2n, 0kl: k or l = 2n, hk0: h or k = 2n, h00: h = 2n, 0k0: k =

2n, 00l: l = 2n. In contrast to that, a 3[111] rotation, which

belongs to the Laue class of the normalizer, brings to overlap

ek0, 0el and h0e reflections (all present) and uk0, 0ul and h0u

reflections (all absent), without affecting the observed reflec-

tion conditions.

Space-group types with tetragonal affine normalizer.

Twenty-six types of orthorhombic space groups have a tetra-

gonal affine normalizer (P2221, P21212, C2221, C222, Pmm2,

Pcc2, Pba2, Pnn2, Cmm2, Ccc2, Fmm2, Fdd2, Imm2, Iba2,

Pccm, Pban, Pbam, Pccn, Pnnm, Pmmn, Cmmm, Cccm,

Cmme, Ccce, Ibam, Imma). The Laue class of the normalizer is

always the tetragonal holohedry: as a consequence, a fourfold

rotation about the [001] orthorhombic axis when the crystal

has a metric specialization a = b never affects the reflection

conditions and the presence of twinning cannot be inferred

from the reflection conditions. A metric specialization in one

of the two other planes never corresponds to a tetragonal

normalizer and thus a 4[100] or 4[010] twin rotation always

affects the reflection conditions.

Space-group types with orthorhombic affine normalizer. For

the 21 types of orthorhombic space groups that have ortho-

rhombic affine normalizers (Pmc21, Pma2, Pca21, Pnc2,

Pmn21, Pna21, Cmc21, Amm2, Aem2, Ama2, Aea2, Ima2,

Pmma, Pnna, Pmna, Pcca, Pbcm, Pbcn, Pnma, Cmcm, Cmce),

class IIB twinning in general does affect the reflection

conditions of a crystal having a space group of this type. Two

exceptions exist, however: for Amm2 and Aem2 the A-type of

conventional unit cell combined with the m- or e-glide type of

mirrors gives a diffraction pattern not affected by a fourfold

twin operation about [100].

Space-group types with a specialized hexagonal lattice

metric. An orthorhombic crystal with a hexagonal lattice has

an orthohexagonal conventional unit cell base-centred in the

plane perpendicular to the sixfold axis of the lattice. This

means that only space-group types with the following types of

conventional unit cells are compatible with a hexagonal

lattice:

(i) oC with a = b	 31/2 or b = a	 31/2: the sixfold axis for the

lattice is along the c axis of the crystal;

(ii) oA with c = b 	 31/2 or b = c 	 31/2: the sixfold axis for

the lattice is along the a axis of the crystal;

(iii) oB with a = c 	 31/2 or c = a 	 31/2: the sixfold axis for

the lattice is along the b axis of the crystal.8

The same argument applies to a monoclinic crystal with

hexagonal lattice, the lower geometric crystal class having no

influence on the effects of class IIB twinning on the reflection

conditions.

The coset decomposition of the hexagonal holohedry

with respect to the orthorhombic holohedry gives two

twin laws; the respective coset representatives can be

taken as 3+ and 3� rotations, the other twin operations being

equivalent under the point group P of the individual (if H is

not holohedral, class IIA may, but not necessarily does,

accompany class IIB twinning). Therefore, the effect of

class IIB twinning on an orthorhombic crystal with a hexa-

gonal lattice can be studied through the effect of threefold

rotations on the reflection conditions of non-symmorphic

space-group types with mP, mS or oS types of conventional

unit cells, i.e. 16 types of space groups (P21, Pc, Cc, P21/m,

P2/c, P21/c, C2/c, C2221, Cmc21, Ccc2, Aem2, Ama2,

Cmcm, Cccm, Cmme, Ccce). A threefold rotation about the

c axis exchanges planes (h0l)*, (hhl)* and (h �hhl)* on the one

hand and planes (0kl)*, (3hhl)* and (3hhl)* on the other

hand, or planes (h0l)*, (h3hl)* and (h3hl)* on the one

hand and planes (0kl)*, (hhl)* and (hhl)* on the other hand

(depending on whether a > b or b > a; to obtain the results
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8 No space group is given with an oB conventional unit cell as standard setting
in International Tables for Crystallography.



when the twin axis is along the a or b axis of the crystal one has

to simply permute the indices). As a result, the zonal reflection

conditions are annihilated and only the serial reflection

conditions are left. Furthermore, some of the integral reflec-

tion conditions of the F type of unit cell are annihilated, the

resulting diffraction pattern simulating the integral reflection

conditions of an S type.

In conclusion, class IIB twinning of an orthorhombic or

monoclinic crystal with hexagonal lattice results in a diffrac-

tion pattern with only serial reflection conditions. No

diffraction enhancement of symmetry is observed unless an

equi-volume complete twin is realized.

7. Conclusions

Merohedric twinning corresponds to a single orientation for

the lattice of the individuals and each measured diffraction

actually corresponds to the weighted sum of diffractions from

each individual. An ambiguity therefore arises on three

structural models, that we have termed the H, the t-H and the

G model. Nevertheless, the observed reflection conditions are

compatible with the three models in 72 of 150 cases; for the

other 78, either the G model is excluded because it is not

compatible with the observed reflection conditions (71 cases),

or it corresponds to a group which is not an extension hH,si

and thus the structure solution or at least the refinement

would fail (seven cases). Furthermore, in one case of class IIA

twinning and several cases of class IIB twinning, the twin

operation may affect the observed reflection conditions, by

bringing to overlap a present diffraction of an individual with

an absent diffraction of another individual, which makes it

easy to differentiate between the H and the t-H model. In the

case of class IIB twinning, the undistinguishable cases

actually become a minority, and non-space-group absences,

in particular those on the hh�h diffractions, are an unam-

biguous sign of twinning. However, because they affect only a

small subset of the diffraction pattern, they can be easily

missed by the investigator. These reflection conditions,

supplemented by a careful examination of the symmetry of the

intensity distribution, allow one to recognize the presence of

twinning at a pre-solution stage in a rather large number of

cases.

We would like to express our gratitude to the anonymous

referees, whose comments allowed us to significantly improve

the manuscript.

References

Araki, T. (1991). Z. Kristallogr. 194, 161–191.
Bricogne, G. (2008). International Tables for Crystallography, Vol. B,

3rd ed., edited by U. Shmueli, Section 1.3.2.6. Heidelberg: Springer.
Buerger, M. J. (1954). Anais Acad. Bras. Ciéncias, 26, 111–121. [Later

republished in Buerger, M. J. (1960). Crystal-Structure Analysis, pp.
53–67. New York: John Wiley and Sons.]

Catti, M. & Ferraris, G. (1976). Acta Cryst. A32, 163–165.
Dornberger-Schiff, K. (1956). Acta Cryst. 9, 593–601.
Ferraris, G., Makovicky, E. & Merlino, S. (2008). Crystallography of

Modular Materials. Chester, Oxford: IUCr/Oxford University
Press.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.
Giacovazzo, C. (2011). Fundamentals of Crystallography, 3rd ed., ch.

4, edited by C. Giacovazzo, H. L. Monaco, G. Artioli, D. Viterbo, G.
Ferraris, G. Gilli, G. Zanotti & M. Catti. Chester, Oxford: IUCr/
Oxford University Press.

Grimmer, H. & Nespolo, M. (2006). Z. Kristallogr. 221, 28–50.
Hahn, Th. & Klapper, H. (2003). International Tables for Crystal-

lography, Vol. D, edited by A. Authier, ch. 3.3. Dordrecht: Kluwer.
Iwasaki, H. (1972). Acta Cryst. A28, 253–260.
Janner, A. (2004a). Acta Cryst. A60, 198–200.
Janner, A. (2004b). Acta Cryst. A60, 611–620.
Koch, E. (2004). International Tables for Crystallography, Vol. C, 3rd

ed., edited by E. Prince, ch. 1.3. Dordrecht: Kluwer.
Koch, E. & Fischer, W. (2006). Z. Kristallogr. 221, 1–14.
Koch, E., Fischer, W. & Müller, H. (2006). International Tables for

Crystallography, Vol. A, 5th revised ed., edited by Th. Hahn, Part
15. Heidelberg: Springer.

Le Page, Y., Donnay, J. D. H. & Donnay, G. (1984). Acta Cryst. A40,
679–684.

Ledermann, W. (1964). Introduction to the Theory of Finite Groups,
5th ed. Edinburgh: Oliver and Boyd.

Looijenga-Vos, A. & Buerger, M. J. (2006). International Tables for
Crystallography, Vol. A, 5th revised ed., edited by Th. Hahn, Part 3.
Heidelberg: Springer.

Marumo, F. & Saito, Y. (1972). Acta Cryst. B28, 867–870.
Nespolo, M. (2004). Z. Kristallogr. 219, 57–71.
Nespolo, M. & Ferraris, G. (2000). Z. Kristallogr. 215, 77–81.
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